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a b s t r a c t

The synchronization dynamics of two linearly coupled pendula is studied in this paper.

Based on the Lyapunov stability theory and Linear matrix inequality (LMI); some

necessary and sufficient conditions for global asymptotic synchronization are derived

from which an estimated threshold coupling kth, for the on-set of full synchronization is

systems is in good agreement with theoretical analysis. Prior to the on-set of

synchronization, the boundary crisis of the chaotic attractor is identified. In the bistable

states, where two asymmetric periodic attractors co-exist, it is shown that the coupled

pendula can attain multistable states via a new dynamical transition—the basin crisis

that occur prior to the on-set of stable synchronization. The essential feature of basin

crisis is that the two co-existing attractors are destroyed while new three or more co-

existing attractors of the same or different periodicity are created. In addition, the linear

perturbation technique and the Routh–Hurwitz criteria are employed to investigate the

stability of steady states, and clearly identify the different types of bifurcations likely to

be encountered. Finally, two-parameter phase plots, show various regions of chaos,

hyperchaos and periodicity.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Coupled nonlinear oscillators exhibit rich catalogues of dynamical behaviour including synchronization and multistability of
attractors. On the one hand, the phenomena of synchronization are of fundamental importance in the study of biological, physical
and technological problems [1–3]. The history of synchronization dates back to the Huygens discovery of two synchronizing
pendulum clocks in 1673 [4]. However, the seminar work of Pecora and Carroll [5] on the synchronization of identical chaotic
systems has led to intensive research activities in this area [1,2,5]. The study of synchronized dynamics derived its motivations
from its potential applications in communication systems, time series analysis, modelling brain and cardiac rhythm activity and
earthquake dynamics [1,6].

Various types of synchronization phenomena which are based on the degree of interaction among oscillators have been
identified by many researchers in the recent time [7,8]. Among these are complete synchronization (CS) [5,6,9]; generalized
synchronization (GS) [10]; phase synchronization (PS) [11–13]; lag synchronization (LS) [11]; anticipated synchronization (AS)
[14,15] and measure synchronization (MS) [16–18]. Practical applications of synchronized dynamics have been reported by many
authors, some of which are in laboratory experiments such as lasers [19], plasmas [20] and solar activities [21] and so on.

Sensitivity to initial conditions is a generic feature of chaotic dynamical systems and in particular, synchronization
between two identical chaotic system remains an intriguing problem. For a system of two coupled chaotic systems such as
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_x1;2 ¼ f1;2ðx1;2Þ, where the overdot represents differentiation with respect to time, t, x1;2 are state space variables for systems
1 and 2, f1;2 being the corresponding nonlinear functions, synchronization in a direct sense implies that jx1 � x2j-0 as
t-1. When this occurs, the coupled systems are said to be completely synchronized [2,7,6,9]. Complete synchronization
therefore implies a perfect locking of chaotic trajectories in the phase space.

The subject of synchronized dynamics has been a topic of numerous papers, most of which have been demonstrated
theoretically [22–24], numerically [25–34] and experimentally [35,36] for several systems. In particular the authors in
[26,28,36–41] have shown that the chaotic pendulum is a physically realizable system that exhibits the spectrum of
temporal chaotic phenomena [37–39], including control [40,41] and intermittent synchronization [26,28,35,36]. The
persistent intermittent synchronization in coupled pendulums as reported by Baker et al. [26,28,35,36], however, occur due
to the type of coupling employed in their investigations. In Refs. [26,28,35,36], the two pendulums were coupled linearly
through their velocity coordinates. The model could describe a resistively coupled chaotic Josephson junctions as in Ref.
[31]. Indeed, the type and topology of coupling may differ and any specific choice of coupling scheme would determine the
synchronization outcome. Here, we show that full/complete synchronization can be realized between linearly coupled
chaotic pendulum—when the coupling configuration is in the displacement coordinates. Our model employs the spring-
type coupling that could exist between interacting particles and has been used (together with the Lernard-Jones potential)
to describe interactions among the manomers for single DNA molecule in Brownian dynamics simulations as well as in
polyelectrolyte brusches and ssDNA molecules [42–44]. Very recently [45], we employed this kind of linear feedback to
study synchronization phenomena in mutually coupled double-wells Duffing oscillators (DDOs) exhibiting cross-well
chaos [46]. We showed that the coupled DDOs achieved complete synchronization when the coupling strength was
increased beyond a critical value. We also reported that the oscillators in their bistable states undergo basin bifurcations in
which multistable states are reached as additional attractors are induced in the phase space; and hence one could find
nþ qðnZ2;qZ1Þ basins of attraction for the co-existing attractors for a given set of parameters. Indeed, the universality of
the results that we presented in Ref. [45] and the underlying mechanism are questions that were not treated. Similarly, the
synchronization criteria were not theoretically considered. Thus, it would be fundamentally significant and instructive as
well to treat these questions and investigate further how attractors are induced and also identify the dynamical mechanism
of this phenomenon in the coupled DDO’s and other bistable oscillators.

The co-existence of two (bistability) or more (multistability) attractors in phase space are phenomena that have been
proven to exist in many fields of science. For instance, Feudel et al. [47–50] demonstrated the phenomenon of multistability
in discrete systems using the coupled logistic maps, while Vadivasova et al. [51] extensively demonstrated the sequence of
bifurcation scenario leading to multistable state in coupled Rössler systems. In Ref. [52], Neuman et al. reported the
coexistence of synchronous and asynchronous motion in quasiperiodically driven logistic maps and also observed an
interior crisis-like transitions characterized by a change in the speed of the growth of the attractor size. In particular, as a
control parameter varies, attractors may appear, disappear or change stability through different bifurcations. The
bifurcations of attractors, in most cases, are associated with the transformations of their basins of attraction so that their
structures may be very complicated, or even fractal.

In the present paper, we extend our previous study in Ref. [45] to the coupled chaotic pendula. First, we employ the
Lyapunov stability theory and the LMI [53] to obtain some necessary and sufficient conditions for the occurrence of stable
and global synchrony. We examine in detail the synchronization behaviour and show that the tumbling chaotic attractor of
the pendulum is destroyed in an exterior crisis during the transition to synchronization. We also report the existence of
multistable states prior to the on-set of stable synchronized dynamics and further show that the transition to multistable
states is a direct consequence of a new dynamical transition which we term basin crisis. Crises phenomena have been
reported earlier in the literature basically for uncoupled oscillators (see for example Refs. [54,55]). They are usually related
to sudden changes in chaotic attractors with parameter variation and such changes are caused by the collision of the
chaotic attractor with an unstable periodic orbit or, equivalently its stable manifold [56]. The reader may refer to Refs.
[56,57] for comprehensive description of different roots to chaos as well as the three types of crisis that have been reported
in the literature. Recent studies have also identified the crisis event in coupled oscillators when the oscillators transit from
nonsynchronous to synchronous state [9,30,32,33,58]. The basin crisis which we found here is associated with the
destruction of co-existing periodic attractors and the creation of different co-existing periodic attractors of the same or of
different periodicity during the transition to synchronization; and has not been reported previously in the literature to the
best of our knowledge. This phenomenon could be generic in bistable oscillators. The rest of this paper is structured as
follows: In Section 2 we give a brief description of the system. Sections 3 is devoted to the stability analysis and
synchronization criteria; while in Section 4, we give some numerical results on synchronization dynamics. We discuss
basin crisis and multistability in Section 5 and summarize the paper with some concluding remarks in Section 6.

2. Model description

Mathematical model of the oscillator that we study is assumed in the form of a second order nonautonomous
differential equation [46]

€x þ h _x þ
dV

dx
þ f ðg;o; tÞ ¼ 0; (1)
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Fig. 1. Schematics of two coupled periodically driven pendula interacting via the elastic spring with spring-constant, k. Notice that each of the pendulum

of mass mi ði ¼ 1;2Þ is given a displacement xi ði ¼ 1;2Þ in anti-clockwise direction as shown.
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where x represents the displacement from equilibrium position, h is the damping coefficient, f ðg;o; tÞ is the periodic
function of time with the period T ¼ 2p=o, g and o are the amplitude and frequency of external forcing, respectively; and
VðxÞ is the periodic potential given by

VðxÞ ¼ 1� cosx: (2)

VðxÞ is minimum at x ¼ 2np and maximum at x ¼ ð2n� 1Þp, (n ¼ 0;1;2 . . .). When two of such system (1) interact with
each other through a specific coupling, the potential (2) is perturbed and the potential governing such a coupled system is
of the form

Vðx1;2Þ ¼ 2� ðcosx1 þ cosx2Þ þ
k

2
ðx1 � x2Þ

2; (3)

where the last term is the coupling term, k being the coupling parameter which determines the strength of the coupling.
With k ¼ 0 Eq. (3) describes the potential for two uncoupled systems exhibiting both regular and chaotic dynamics when a
strong periodic forcing is applied. In this case it is obvious that the potential has equilibrium at ðx1; x2Þ ¼ ð0;0Þ and
symmetrical about this point. With ka0, the equilibrium as well as the symmetry is changed and the dynamics is thus
expected to be even richer and more interesting.

The following coupled oscillators can be modelled by the potential (3): (i) coupled periodically driven pendula, (ii)
coupled parametrically excited pendula and (iii) coupled Duffing oscillators. These oscillators have been studied
extensively in the uncoupled state. A comparative study of their dynamics has been presented by Szemplinska and Tyrkiel
[46]. They showed that tumbling chaotic motion consisting of an irregular combination of rotations and oscillations in this
class of oscillators is preceded by the two and only two co-existing periodic attractors, which are simultaneously
annihilated prior to period-doubling cascade scenario. Indeed, the results which we present here have been verified for this
class of oscillators; and could be verified also for autonomous bistable oscillators.

The system that we study here consists of two mutually coupled identical periodically driven pendula (see Fig. 1)
described by the following set of second order differential equations [46]

€x1;2 þ h _x1;2 þ
dVðx1;2Þ

dx
¼ a1;2cosðo1;2tÞ; (4)

where the state variables x1;2 denote the rotation angle in anti-clockwise direction from the equilibrium position of coupled
pendula which consists of rigid massless rods carrying point masses (at the ends) with h being damping parameter and
a1;2;o represent amplitude and angular frequency of forcing, respectively. System (4) could be used to model two coupled
Josephson junctions [31,59].
3. Stability and synchronization criteria

In this section, we would employ the Lyapunov stability theory and linear matrix inequalities to obtain some sufficient
criteria for global and full synchronization. Each isolated oscillator with common periodic-driving force can be re-written
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in the autonomous form as follows:

_x1;2 ¼ y1;2;

_y1;2 ¼ �hy1;2 � sinx12 þ acosot: (5)

Equivalently in a compact vector form, we can write (5) as

_X1 ¼ AX1 þ fðX1Þ þmðtÞ � u; (6)

_X2 ¼ AX2 þ fðX2Þ þmðtÞ þ u; (7)

where u ¼ Kðx1 � x2Þ is the linear feedback controller arising from the perturbed potential and K 2 R2�2 is a constant

control matrix. X1;2 ¼ ðx1;2; y1;2Þ
T
2 R2, A ¼ ð00

1
�hÞ, fðX1;2Þ ¼ ð

0
�sinx1;2

Þ and mðtÞ ¼ ð 0
acosotÞ. The synchronization error is defined

as the difference between the relevant dynamical variables and it is given by

e ¼ X1 � X2: (8)

By subtracting Eq. (7) from Eq. (6) and using the definition in Eq. (8), one readily obtain:

_e ¼ ðA� 2Kþ GÞe; (9)

where

G ¼
0 0

gðx1; x2Þ 0

 !
; gðx1; x2Þ ¼ �

ðsinx1 � sinx2Þ

x1 � x2
: (10)

In the absence of the control matrix, K, Eq. (9) would have an equilibrium at ð0;0Þ. If appropriate K is chosen such that the
equilibrium is unchanged, then the synchronization problem would reduced to that of achieving asymptotic stability of the
zero solution of the error system (9). Synchronization in a direct sense implies that with the appropriate choice of coupling
matrix, any set of initial conditions X1ð0Þ and X2ð0Þ satisfy

lim
t-1

JeJ ¼ lim
t-1

JX1 � X2J ¼ 0; (11)

where J:J represents the Euclidean norm of a vector.
Next, by using stability theory on time varied systems, we derive sufficient criteria for global chaos synchronization in

the sense of the error system (9). The following Lemma shall be applied to the main theorem of this paper which is related
to the general control matrix

K ¼
k11 k12

k21 k22

 !
2 R2�2: (12)

Lemma 1. For gðx1; x2Þ defined by (10), the inequality

jgðx1; x2Þjr1 (13)

holds.

Proof. By the differential mean-value theorem we have

sinx1 � sinx2 ¼ ðx1 � x2Þcosf; f 2 ðx1; x2Þ or f 2 ðx2; x1Þ; (14)

so,

gðx1; x2Þ ¼ �
ðsinx1 � sinx2Þ

x1 � x2
¼ �ðcosfÞ; (15)

and hence the inequality (13) holds. &

Theorem 1. If there exists a symmetric positive definite matrix P ¼ ðp11
p12

p12
p22
Þ and a coupling matrix as defined in Eq. (12)

such that

O1 ¼ �2p11k11 � k21jp12j þ p12o0; (16)

O2 ¼ p12ð1� 2k12Þ � p22ð2k22 þ hÞo0; (17)

4O1 �O24½jp11ð1� 2k12Þ � p12ð2k11 þ 2k22 þ hÞ � 2k21p22j þ p22�
240; (18)

then the coupled systems (6) and (7) achieve complete synchronization.

Proof. Let us assume a quadratic Lyapunov function of the form:

VðeÞ ¼ eTPe; (19)
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where P is a positive definite symmetric matrix as defined earlier. The derivative of the Lyapunov function with respect to
time, t, along the trajectory of the error system (9) can be expressed as

_V ðeÞ ¼ _eTPeþ eTP _e: (20)

Substituting Eq. (9) into the system (20), we have

_V ðeÞ ¼ eT½ðAþ GðtÞ � 2KÞTPþ PðAþ GðtÞ � 2KÞ�e: (21)

_V ðeÞ is negative definite if

c ¼ ½ðAþ GðtÞ � 2KÞTPþ PðAþ GðtÞ � 2KÞ�o0 8tZ0: (22)

According to Lyapunov stability theory on the linear time-varied system, the inequality in (22) represents a sufficient
condition for global asymptotic stability of the linear time-varied error system (9) at the equilibrium point. With A;K;P;G
as defined earlier, Eq. (22) thus becomes

c ¼
Z11 Z12

Z12 Z22

 !
; (23)

where Z11 ¼ �4p11k11 þ 2p12ð1� bg � 2k21Þ, Z12 ¼ p11ð1� k12Þ � p12ð2k11 þ 2k22 þ hÞ þ p22ð1� bg � 2k21Þ, and Z22 ¼

2p12ð1� 2k12Þ � 2p22ð2k22 þ hÞ. Since g is symmetric, g is negative definite if and only if

�4p11k11 þ 2p12ðg � 2k21Þo0; (24)

2p12ð1� 2k12Þ � 2p22ð2k22 þ hÞo0; (25)

4½p12ðg � 2k21Þ � 2p11k11�½p12ð1� k12Þ � p22ð2k22 þ hÞ�

� ½p11ð1� 2k12Þ � p12ð2k11 þ 2k22 þ hÞ þ p22ðg � 2k21Þ�
240; (26)

Since the matrix P is positive definite, we have p11p22 � p2
1240. It follows by Lemma 1 that,

�4p11k11 þ 2p12ðg � 2k21Þr� 4p11k11 � 4p12k21 þ 2p12r2O1;

jp11ð1� 2k12Þ � p12ð2k11 þ 2k22 þ hÞ þ p22ðg � 2k21Þjrjp11ð1� 2k12Þ � p12ð2k11 þ 2k22 þ hÞ � 2p22k21j þ p22:

Therefore, for any t40 the inequalities in (24)–(26) hold if the inequalities in (16) to (18) are satisfied. &

In applications the structure of the synchronization controller should be as simple as possible. The following corollaries
give some algebraic synchronization criteria for a few simple controllers, which are obtained from Theorem 1.

Corollary 1. If a control matrix K ¼ diagfk1; k2g and a positive definite symmetric matrix P ¼ ðp11
p12

p12
p22
Þ40 are chosen such that

k14
jp12j

2p11
; (27)

k24
p12 � hp22

2p22
; (28)

4½2k1p11 � jp12j�½p22ð2k2 þ hÞ � p12� � ½p11 � p12ð2k1 þ 2k2 þ hÞ þ p22�
240; (29)

then the coupled systems (6) and (7) achieve complete synchronization.

Proof. Inequalities (27)–(29) can be obtained according to inequalities (16)–(18) with k11 ¼ k1; k22 ¼ k2 and k12 ¼

k21 ¼ 0. &

Corollary 2. If a control matrix K ¼ diagfk; kg and a symmetric positive definite matrix P ¼ ðp11
p12

p12
p22
Þ40 are selected such that

k4max
jp12j

2p11
;

p12 � hp22

2p22

� �
Z0; (30)

16ðp11p22 � p2
12Þk

2 � 8k½2p22jp12j þ p11ðp12 � hp22Þ � jp12ðp11 � hp12Þj� þ 4jp12jðp12 � hp22Þ

� ½jp11 � hp12j þ p22�
240; (31)

then the coupled systems (6) and (7) achieve complete synchronization.

Proof. By setting k1 ¼ k2 ¼ k in the partial synchronization conditions (27)–(28), we obtain inequality (30). For k40 given
by (30), we have

½jp11 � p12ðhþ 2kÞj þ p22�
2r½jp11 � hp12j þ 2kjp12j þ p22�

2: (32)

Thus inequalities (31) can be obtained according to the partial synchronization condition (29) with k1 ¼ k2 ¼ k. Again since
p11p22 � p2

1240, the solution k to the inequality (31) exists. &
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Remark 1. If we select p12 ¼ 0 and p11 ¼ p2240, the following synchronization criterion can be obtained directly
from (31):

K ¼ fk; kg; k4kth ¼
�hþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ 4
p

4
; (33)

where kth is the threshold coupling for full synchronization to occur. In the next section, we would present some numerical
simulation results to verify the existence of complete and stable synchronized states.

4. Synchronization dynamics: numerical results

All the results to be presented here were computed with the following parameter settings: a1;2 ¼ 0:6;o1;2 ¼ 0:69 and
h ¼ 0:1. With these parameters the coupled oscillators in Eq. (4) is in a structurally stable tumbling chaotic state consisting
of a combination of rotations and oscillations as illustrated by the chaotic attractor shown in Fig. 2. This tumbling chaos is
the only steady-state chaotic motion in a broad area of the system parameter.

Numerical solutions were obtained using a fourth order Runge–Kutta routine as well as the software Dynamics [60].
Here, we observe the dynamics of the system as the coupling strength is progressively increased. The quality of
synchronization is measured by examining the behaviour of the average error E, defined in [26,28,45] and given by

E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � x1Þ

2
þ ðy2 � y1Þ

2
q

: (34)

When the coupled oscillators are synchronized, the error dynamics asymptotically becomes zero. That is, E-0 as t-1.
We begin by choosing a coupling strength k ¼ 0 and plot the average error, E, against the time, t, as shown in Fig. 3, this

corresponds to the uncoupled case for which the systems are free running chaotic oscillators. The error dynamics when
k ¼ 0 shows an irregular pattern that is comparable to the size of the attractor. With a small nonzero coupling, the two
systems achieve near synchronization, EðtÞ � 0, for a significant interval at the earlier stage of the dynamics and then
become unlocked and so on (the figure not shown).

However, with appreciable coupling strength, the two systems begin to readjust and build up correlation. For example,
the inset of Fig. 3 shows the time dependence of the synchronization quantity E for three other coupling strengths
illustrating stable synchronization. Furthermore, the threshold coupling, kth, above which complete synchronization occurs
is important. From direct calculation of Eq. (33), we find that kth � 0:48. To confirm this numerically, we employ a recent
technique that is based on the average interaction energies of the system [17]. The basic idea is that when the oscillators
are synchronized, any microscopic property of the systems are equal. One of such microscopic quantity that we consider
here is the average bare energies,

h1;2 ¼
1

2

Z T

0
E1;2ðtÞdt;
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-4 -3 -2 -1 0 1 2 3 4

dx
/d

t

x

Fig. 2. Poincaré section showing a Tumbling chaotic attractor of the periodically driven pendulum in the x2y ðy ¼ dx=dtÞ plane for h ¼ 0:1;o ¼ 0:69; a ¼ 0:6

for k ¼ 0. This tumbling chaotic attractor consists of a combination of rotation and oscillations; with the rotatory motion dominating [46].
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where

E1;2ðtÞ ¼
p2

1;2

2
þ Vðx1;2Þ; p1;2

is the associated momentum and Vðx1;2Þ is the potential. In our numerical computation, we account for the transient effect
by measuring h1;2 after some sufficient initial transients (typically 2000 pre-iterates) has been discarded. We calculated the
average bare energies as functions of the coupling strength, k as shown in Fig. 4(a). When k reaches a certain threshold
(say, kth � 0:594, see the inset which shows the enlargement of the transition point), full synchronization is realized. Above
the kth (see inset of Fig. 3(a) for k4kth), the correlation between the oscillators is strongest and the synchronization is
stable, indicating that the two oscillators asymptotically approach identical trajectories. This is consistent with the value
obtained from Eq. (33) and obviously differs from the persistence intermittency earlier reported in [26,28,35,36]. Further
evidence of full synchronization is given in Fig. 4(b). Here, we calculated the average synchronization error,

Eav ¼
1

T

Z T

0
EðtÞdt;

where EðtÞ is given in Eq. (34) and the average interaction energy

EIðtÞ ¼
1

T

Z T

0
EkðtÞdt;

where

EkðtÞ ¼
k

2
ðx1 � x2Þ

2:

Clearly, Eav and EI approaches zero at the critical point and remains stable for k4kth.

5. Multistability and basin crisis

The manner in which attractor basins change with the coupling strength is also an important aspect of the
synchronization process that could give further insight into the synchronization behaviour and the dynamics in general.
This was reported recently for coupled double well Duffing oscillators in Ref. [45]. It was shown that coupling induced
additional attractors (and basins) for some coupling strength prior to the on-set of synchronization. Here, we employ
similar numerical procedure to investigate the effect of coupling strength on the attractors and their basins of attraction for
the linearly coupled pendula.

Let us consider the coupled periodically driven pendula with the following parameter settings: o ¼ 0:713;h ¼ 0:1; a ¼ 0:6.
For this system parameter in the uncoupled case, two co-existing asymmetric resonant attractors were reported in Ref. [46].
These attractors are found within the narrow band of the frequency and are annihilated prior to the formation of the stable
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tumbling chaotic motion. It should be noted that in the coupled case when synchronization occurs, the coupling term vanishes
ðx1 ¼ x2Þ and the two oscillators are again freely running systems such that two resonant attractors should be found in the
subspace, with their corresponding basins characterized with fractal basin boundaries. During the synchronization transition,
basin bifurcation occurs leading to different multistable states.

To illustrate the basin bifurcations, we investigate the effects of coupling on the basins of attraction, by visualizing the
attractors and their basins of attraction using the software Dynamics [60] as employed in [45,46]. We display in Fig. 5, our
results. The basins of attraction were numerically generated by selecting a grid of 720� 720 points in the region of phase
space determined by the rectangle grid of points ð�p;pÞ � ð�p;pÞ which are taken as the initial conditions after 2000 pre-
iterates have been discarded considering the long chaotic transients required to allow the system to settle in a stable state.
The attractor to which an initial point goes determines the colour assigned to it. In the absence of coupling, (i.e. k ¼ 0), the
system possesses two co-existing resonant attractors that are asymmetrical to each other (see Fig. 5(a)).

As the coupling is progressively varied (see Fig. 5(b) and (c)), change in the stability of the system occurs as a result of
multiple basin bifurcations as we shall show later. The consequences of this bifurcation are (i) the destruction of the two co-

existing T-periodic resonant attractors and (ii) the birth (or creation) of new attractors with the same or different periodicity.
For low coupling typically ko0:3, we observed the destruction of the resonant attractors taking place. This is followed by
the birth (or creation) of the first set of co-existing attractors at the first bifurcation point (k � 0:3). For 0:3rkr0:42,
multiple basin bifurcations occur. The number N ¼ nþ q ðnZ2; qZ1Þ of attractors that can be created depends on the value
of k as well as the initial conditions of the oscillators. To illustrate this, we show in Fig. 5(b) four 2T- periodic attractors for
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Fig. 5. (a) Two asymmetric coexisting attractors for an uncoupled periodically driven pendulum; (b) four 2T periodic attractors for coupled periodically

driven pendula (c ¼ 0:30); (c) 2T periodic attractor coexisting with 1T periodic attractor in coupled periodically driven pendula (c ¼ 0:39); and (d) the

basin structures for the coupled periodically driven pendula for the four co-existing T periodic attractors. The parameters are: h ¼ 0:1; a ¼ 0:6 and

o ¼ 0:713.
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k ¼ 0:30 and in Fig. 5(c) we display three T-periodic attractors for k ¼ 0:39. In Fig. 5(d), we also show the basins of
attraction of the four attractors shown in Fig. 5(b). Above k � 0:42, as the oscillators approach the synchronized state, the
coupling induced attractors are destroyed completely; while the two resonant attractors re-appear and their basins
correspond to that of the uncoupled pendulum . Thus, for a fixed set of the system parameters, an increase in the coupling
strength has a significant effect on the number N of the attractors and their basins of attraction. In particular, there is a
probability of finding nþ q;nZ2; qZ1 basins associated with co-existing attractors in the phase space for the range of
parameters studied, implying that coupling induces multistable states in coupled oscillators. For other system parameters
and initial conditions, the number n could be greater than the results reported here; and notably, high-dimensional
periodic and chaotic attractors could also be found—these could co-exist in phase space as we reported recently for two
coupled Duffing oscillators with different potentials [61]. However, the main emphasis here is that multistable states are
created as k is progressively increased and are annihilated as the synchronous regime is approached.

It would be significant to examine the stability of the periodic solution in the Poincaré section dP. Here, we use linear
perturbation analysis as in Refs. [62,63] for Duffing oscillators, to investigate the global bifurcations of this system. The
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equation for the perturbed system is given by

x1 ¼ x10 þ dx1; x2 ¼ x20 þ dx2; x3 ¼ x30 þ dx3;

y1 ¼ y10 þ dy1; y2 ¼ y20 þ dy2; y3 ¼ y30 þ dy3; (35)

where dxs; dys and xs0; ys0 (s ¼ 1;2;3) are small perturbations and steady states, respectively. Thus, using Eq. (35) in (6) and
(7) and approximating the sine function with the first two terms in the Taylor series, we obtain the following variational
equation

ddFg

dt
¼ DVðfg0ÞdFg; (36)

with

DVðfg0Þ ¼

0 1 0 0

1�
1

2
x2

10 � k �h c 0

0 0 0 1

c 0 1�
1

2
x2

20 � k �h

0
BBBBBB@

1
CCCCCCA
; (37)

where DVðfg0Þ is the 4� 4 Jacobian matrix describing the vector field along the solution dfgðtÞ and fg0 being the equilibrium
state. The quadratic and higher order terms are neglected in the perturbations, so that the stability of the periodic motion
are determined according to the real parts of the roots of the characteristics equation detðDVðfg0Þ � IlÞ ¼ 0 expressed as

l4
þM3l

3
þM2l

2
þM1lþM0 ¼ 0; (38)

where M0 ¼ k2 � 2kþ 1;M1 ¼ 2hðk� 1Þ;M2 ¼ h2 � 2þ 2k and M3 ¼ 2h are the coefficients depending on the potential
parameters h and k; and liði ¼ 1;2;3;4Þ are the eigenvalues of DVðfg0Þ. The nature of the roots of Eq. (38) are predicted using
Routh–Hurwitz criteria [64] and for different values of k 2 ½0:30;0:50�. Thus, we obtain a matrix A associated with (38)
given by

A ¼

M3 M1 0 0

1 M2 M0 0

0 M3 M1 0

0 1 M2 M0

���������

���������
(39)

yielding the following determinants Ai0s:

A1 ¼ M340;

A2 ¼ M2M3 �M140;

A3 ¼ M1M2M3 �M0M2
340;

A4 ¼ M0M1M2M3 �M0M2
140: (40)

With Eq. (40), the Routh–Hurwitz criteria [64] are satisfied, implying that the roots of Eq. (38) have negative real parts.
Thus, the system with the given set of parameters k and h can undergo many types of bifurcations namely: saddle-node (sn)
ðReðli ¼ 1Þ, period-doubling (pd) ðli ¼ �1Þ, Hopf(H) ðli ¼ o7ja; j2 ¼ �1Þ bifurcations. Except for Hopf bifurcations, such
bifurcations have been reported for a one dimensional pendulum [46]. This analysis allows us to predict how steady state
becomes locally unstable and to be aware of the type of bifurcation expected in the system.

The parameter space ðx; _x; y; _y; yÞ for the full nonlinear system is far too large for a systematic numerical analysis. Here,
we employ two-parameter phase diagrams to gain further insight into the global bifurcations in parameter space. Using the
software Dynamics [60] we fix h ¼ 0:1 and display in Fig. 6(a)–(d) different two-parameter phase plots in which several
attractors coexist and the prevalence of periodic versus chaotic dynamics. As an example, Fig. 6(a) is a frequency-coupling
(i.e. o� k) phase diagram; here, we observe some feature of Arnol’d tongues in the frequency range of 0:30ror0:375 and
0:52ror0:78; indicating the possibility of mode-locking phenomenon, wherein stable periodic solution lie on an invariant
torus in state space and possesses a period n times the period of oscillation (i.e. T ¼ 2p=o) [65]. It is known that the global
bifurcations associated with the Arnol’d tongues include saddle node (sn), period doubling cascades (pd) and sudden chaos
[65]. In panels (b) to (d) we depict frequency–amplitude ðo2aÞ planes for different coupling strengths k ¼ 0:30;0:35 and
0.42, respectively. Throughout Fig. 6, one can distinguish regions of hyperchaos (dark green), chaos (blue), and
quasiperiodicity with period-1 (yellow), period-2 (light green) and period-3 (grey). The dark brown colour corresponds to
non-attracting region for which the orbit do not settle to steady state.

As mentioned earlier, the transition to multistable state is a direct consequence of Basin crisis. To illustrate this, let us
consider the chaotic attractor for the periodically forced pendulum shown in Fig. 2 for k ¼ 0. For low coupling, typically
below kth, in the nonsynchronized states, Poincaré points of the attractor move on the attractors in an uncorrelated manner,
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Fig. 6. Two-parameter bifurcation diagram in: (a) o2k plane; (b) o2a plane for k ¼ 0:30; (c) o2a for k ¼ 0:39 and (d) o2a for k ¼ 0:42 with the

following parameters: h ¼ 0:1; a ¼ 0:6;o ¼ 0:69. showing regions of hyperchaotic behaviour (dark green), chaos (dark blue), and quasiperiodicity with

period-1 (grey), period-2 (light green) and period-3 (yellow) and (brown) region corresponds to nonattraction region. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)
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gradually filling up the entire phase space. For k ¼ 0:35okth, shown in Fig. 7, the tumbling chaotic attractor is weakly
registered initially, but it is later superposed by uncorrelated Poincaré points due to desynchronous points. We notice that:
(i) the the chaotic attractor has been destroyed, (ii) the size has increased and (iii) the structure of the distance between it and

the basin boundary approaches zero so that the entire phase space is gradually being filled up with uncorrelated Poincaré
points. This is essentially an indicator of a more complex dynamics; and the phenomenon termed boundary or exterior crisis

of the attractor has been reported earlier as a synchronization transition [9,12,30,32,33]. It is usually attributed to the
collision of the attractor with an unstable periodic orbit on its basin boundary or, equivalently its stable manifold [56]. In
the synchronized state of mutually coupled oscillators, the chaotic attractor is rebuilt, although there could be residual
Poincaré points that do not fall on the main body of the original attractor [32] leaving some spotted appearance in the open
parts of the phase space.

Our main interest here is on how this crisis event is manifested in the bistable states of the oscillators. When the
oscillators are simulated in their bistable states as illustrated in Fig. 5, we find that the coupling region (0:3rkr0:43)
where multistability is achieved corresponds to the region where boundary crisis of the chaotic attractor occurs.
During the transition from bistability to multistability: (i) the two co-existing T-periodic resonant attractors are

destroyed, (ii) new attractors are born (or created) (Hereafter we would refer to the created attractors as crisis induced

attractors), (iii) the number of basins increases and (iv) the new attractors occupy larger phase-space region. In boundary

crisis and interior crisis, the topological structure of the attractor is changed. The number of basin does not increase. In
the attractor merging crisis, two or more chaotic attractors merge to form one chaotic attractor. The most prominent
type (often referred to as sudden chaos) occurs when a chaotic attractor is suddenly destroyed as the parameter passes
through its critical value. The transition which we observe here does not fall in any of these three categories and
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Fig. 7. Trajectories of the attractors in the Poincaré sections illustrating the boundary crisis phenomenon during the transition to synchronized dynamics

for the coupled pendulum with periodic forcing for k ¼ 0:35. The parameters are as in Fig. 1.

O.I. Olusola et al. / Journal of Sound and Vibration 329 (2010) 443–456454
therefore represents a new dynamical transition which we call Basin crisis and it is conjecture that it could be generic
for coupled bistable oscillators. Notably, a reverse basin crisis occurs as the coupled oscillators approach the
synchronization region. In this transition, all the crisis induced attractors are annihilated and the T-periodic attractors
are again created.
6. Summary and conclusions

In summary, we have examined the synchronization and multistability in two linearly coupled chaotic pendulums. The
global stability of the synchronized state has been examined using Lyapunov stability theory and linear matrix inequality;
and we have obtained some necessary and sufficient conditions for global asymptotic synchronization from which an
estimate of the threshold coupling was determined. At low coupling the two oscillators in their chaotic states exhibit
transient synchronous behaviour followed by complete synchronization when the coupling strength was increased above a
critical value. Numerically, we estimated the threshold coupling for full synchronization to be achieved and found good
agreement with theoretical analysis. Prior to the threshold coupling, we identify the boundary crisis event in which the
chaotic attractor is destroyed and its size increases. In the bistable states, we also found multiple basin bifurcations
sequences leading to multistability as the coupled oscillators transit from the nonsynchronized to the synchronized state.
In the multistable states different set of attractors co-exist depending on the coupling strength and the initial conditions.
The transition to multistability identified as Basin crisis, has not been previously reported in the literature, to the best of our
knowledge and thus represents a new dynamical transition in coupled oscillators. The essential feature of Basin crisis are:
(i) the destruction of the two co-existing attractors and (ii) the birth (or creation) of new co-existing attractors with the same or

different periodicity. In the multistable state, there is a probability of finding N ¼ nþ q;nZ2; qZ1 attractors in the phase
space. The prevalence of these attractors in parameter space were globally examined and we observed that beside chaotic
states, hyperchaotic states are possible. We conjecture that this phenomenon could be observed in coupled bistable
oscillators and therefore could be further investigated in autonomous dynamical systems like the Lorenz system and the
Rössler system.
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